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In experiments recently performed at Melbourne, Pitot-tube mean velocity profiles
in a boundary layer disagreed with those obtained with hot wires. The standard
MacMillan (1956) correction for the probe displacement effect and a correction for
turbulence intensity were both required for obtaining agreement between the two
sets of mean velocity data. We were thus motivated to reanalyse the Princeton
superpipe data using the same two corrections. The result is a plausible conclusion
that the superpipe is rough at the higher Reynolds numbers and its data follow the
Colebrook (1939) formula for commerical pipes rather well. It also appears that the
logarithmic law of the wall is valid, with a Kármán constant close to that found
recently by Österlund (1999) from boundary layer measurements with a hot wire. The
smooth regime in the pipe gave almost the same additive constant for the log-law as
Österlund’s. A comparison between the superpipe data and the pipe data of Perry,
Henbest & Chong (1997) suggests that the conventional velocity defect law may be
valid down to lower Reynolds numbers than concluded by Zagarola & Smits (1998).

1. Introduction
In recent boundary layer experiments at Melbourne, we found that the mean

velocity profile measurements made with a Pitot tube disagreed with those obtained
with hot wires. The Pitot-tube results had a characteristic ‘kick up’ above the log-
law line in and around the buffer zone. Such a kick up was absent in the hot-
wire results. In order to correct the Pitot-tube data so that they agree better with
hot-wire data, we needed to apply two corrections. The first was the MacMillan
(1956) correction that was originally developed for pipe flow. It corrects for the
displacement effect of the probe due to mean shear. MacMillan tested a series
of probes of different diameters and extrapolated the readings to a zero-diameter
probe. The second correction accounts for the effect of turbulence intensity. Pitot-
tube readings are affected by quadratic nonlinearities since pressures are averaged
before velocities are evaluated, whereas hot-wire voltages are converted to velocities
before any averaging is done, thus avoiding nonlinear problems. These corrections
are significant only at viscous distances from the wall of less than 100, but the
MacMillan correction was the major one throughout. The results of these corrections
are described in Jones, Marusic & Perry (2001).

The ‘kick up’ mentioned earlier is also present in the superpipe data of Zagarola &
Smits (1997). These authors interpreted it as part of a power law. Furthermore, the

† Sadly, Professor Perry died on 3 January 2001 during the preparation of this paper.
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Figure 1. (a) Uncorrected superpipe data shifted up vertically by 5 units in U/Uτ. The smaller
numbers in the profile sequence correspond with lower Reynolds number of the superpipe data,
with 26 representing the highest Reynolds number. Profiles 5, 10, 15, 20 and 26 correspond to
a+ = 2.344 × 103, 8.486 × 103, 3.288 × 104, 1.273 × 105 and 5.286 × 105 respectively. (b) Corrected
superpipe data: • represents uncorrected data superimposed for comparsion. (c) Profile 5 is compared
with profile 26 to show the range of ∆U/Uτ. Profiles are shifted down by 5 units. The slope of
logarithmic lines in (a) and (b) is equal to 0.436, while in (c) it is 0.39.

superpipe data yield a quite different value of the Kármán constant than some recent
results of Österlund (1999) for a boundary layer. Resolving these possible anomalies
is the motivation for this work.

2. Analysis of data
A selection of uncorrected profiles measured in the superpipe is shown in figure 1(a).

It is found that, for y+ > 100, all profiles collapse approximately for a law of the
form

U

Uτ

=
1

κ
ln[y+] + A+

Π

κ
h[y/a] (2.1)

where U is the mean velocity, y+ = yUτ/ν with y the distance from the wall, Uτ the
friction velocity, and ν the kinematic viscosity, A is the smooth-wall additive constant
and Π is a factor which some workers believe is dependent on the Reynolds number
at low values; h is analogous to the Coles wake function in boundary layers and is a
universal function of y/a where a is the pipe radius. Figure 1(b) shows the same data
after application of the MacMillan correction and correction for turbulence intensity,
the details of which are given in § 3 below. We decided to determine by a least-squares
fit to the data the log-law constants by assuming that the law holds only for y+ > 100
and y/a < 0.1. This law is shown as continuous lines in figure 1(c). One immediately
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sees that (2.1) needs to be modified to

U

Uτ

=
1

κ
ln[y+] + A− ∆U

Uτ

[k+
s ] +

Π

κ
h[y/a]. (2.2)

The displacement downwards of ∆U/Uτ on the semi-log plot could be a roughness
effect. In that case, ∆U/Uτ is the Hama (1954) roughness function, which is a function
of k+

s (≡ ksUτ/ν), where ks is the equivalent sand grain roughness. For a low Kármán
number a+(≡ aUτ/ν), and hence low k+

s , roughness effects are expected to be small.
Tennekes & Lumley (1972) pointed out that for pipe flow the velocity defect law,
based upon centreline and friction velocity, is independent of roughness for k/a� 1.
This property applies to the present data after sufficient development length and is
employed to deduce the value of κ. Furthermore, the value of A is obtained from
the low Reynolds number data which gave an almost constant value. From the data
one concludes that κ = 0.39 and A = 4.42 which compares well with κ = 0.38
and A = 4.1 as found by Österlund (1999) who carried out extensive zero-pressure-
gradient boundary layer measurements using hot wires. It should be mentioned that
log-laws with these two sets of numbers are indistinguishable for the range of y+

data considered. The Reynolds number based on momentum thickness, Rθ was as
high as 2.7 × 104 and the Kármán number δ+ = 8000 for Österlund’s data, see also
Österlund et al. (2000). The skin friction was determined using a fit to the buffer zone
with a law derived from DNS data. The skin friction was also checked by an oil-film
interferometry method. The values of κ and A differ slightly from ours because they
fitted the log-law to data for y+ > 200 and y/δ < 0.15, where δ is the boundary layer
thickness. The values of κ and A quoted by Zagarola & Smits (1998) are κ = 0.436
and A = 6.15.

In figure 1, the profile with the lowest Reynolds number has a+ = 2.344 × 103

and there is a short extent of the log-law. At lower Reynolds numbers there is little
or no log-law region according to our strict criterion mentioned earlier; in practice,
however, the data still appear to be logarithmic.

3. Details of corrections
The MacMillan correction for the mean shear is simply to add 0.15dp to the y-

coordinate where dp is the Pitot-tube outer diameter. At y/dp < 2 there is a wall
proximity correction formulated by MacMillan but it was found not to be significant
for the cases considered here. For the boundary layer data of Jones et al. (2001), we
measured the turbulence intensity. For the superpipe such measurements do not exist
and we assumed that the turbulence intensities followed the following similarity laws.
For y+ > 50

u2
1

U2
τ

= 2.67− 0.9 ln[y/a]− 6.06(y+)−0.5 (3.1)

proposed by Perry, Henbest & Chong (1986) for a pipe, and for 15 < y+6 50

u2
1

U2
τ

= (3.0− 1.5 log[y+/15])2 (3.2)

found by curve fitting some pipe data of Abell (1974). For y+ < 15, one could use the

data of Durst, Jovanović & Sender (1995) to formulate a correction. Here u2
1 is the

mean square of the streamwise velocity fluctuation and the corrected mean velocity
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Figure 2. Roughness function.

U is found from

U

Uτ

=

((
Um

Uτ

)2

−
(
u2

1

U2
τ

))0.5

. (3.3)

Um is the measured mean velocity. Here an overbar denotes a temporal mean. When
these corrections were applied to the boundary layer results of Jones et al. (2001)
the Pitot-tube results for 40 < y+ < 80 were shifted down by 0.45 units in U/Uτ

but were still slightly above hot-wire results by about 0.2 units. Perhaps some further
corrections for other components of turbulence are needed.

4. Effect of roughness
The effect of roughness on the superpipe data was pointed out by Barenblatt

& Chorin (1998) who compared a profile from the superpipe with Nikuradse’s
(1932) smooth-pipe profile at about the same Reynolds number. Figure 2 shows the
superpipe experimental values of the Hama (1954) roughness function as determined
by us via equation (2.2) using the constants mentioned earlier, compared with the
Hama equation

∆U

Uτ

= 5.66 log[k+
s + 3.30]− 2.92 (4.1)

derived from the Colebrook (1939) formula for ‘natural roughness’ or ‘commercial
roughness’ such as the surfaces of wrought iron and cast iron. It can be seen that
the comparison is quite reasonable. Figure 3 shows an expanded view. The value
of ks chosen was that quoted by Zagarola & Smits (1998). From the use of a
comparator plate, they estimated the r.m.s. value of the surface roughness to be
krms = 0.15± 0.03 µm (6.0± 1.2 µin), see also Smits & Zagarola (1998). The equivalent
sand grain roughness ks was taken to be 3.0 krms since it seems to fit the data in
figures 2 and 3. Hama (1954) suggested ks = 5.0 krms, but this would hardly change
figures 2 and 3 or their implications. The ratio used here between ks and krms is also
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Figure 3. Roughness function, close-up. Points correspond to profiles 5 to 26.

of the same order as found by Acharya, Bornstein & Escudier (1986) who examined a
variety of different artificial roughnesses in an attempt to simulate natural roughness.
Although the shape of the Hama roughness functions varied from one geometry to
another in the transitionally rough regime, the order of the effect was much the same
as with the Colebrook formula. In figure 2 the mean of the Nikuradse (1933) sand
grain roughness function data in the transitionally rough regime is also shown. As we
were recently reminded by Bradshaw (2000), sand grain roughness behaviour has no
relevance to natural roughness in the transitionally rough regime. However it is used
for determining the equivalent sand grain roughness scale ks of a given roughness by
forcing the data to match with the sand grain formula in the fully rough regime, i.e.
(4.1) with k+

s sufficiently large. Of course the formulae used here are based on slightly
different values of κ, but this has only a second-order effect on the conclusions.

In figure 1(c), as already mentioned, are shown superimposed on the corrected data
log-laws with κ = 0.39. Also shown as an envelope to the outer parts of the corrected
and uncorrected profiles is a log-line with a slope corresponding to the Zagarola
& Smits (1998) value of κ = 0.436. Since the MacMillan correction and turbulence
intensity correction are negligible for this part of the flow, one might be tempted to
say that the value of κ could be determined from the slope of this envelope. It avoids
having to deal with the log-law region with associated corrections. Such logic would
be correct if the wall were smooth. However, with roughness present, it is obvious
that a false κ will be inferred using this method.

5. The velocity defect law
One of the most important laws established in pipe flow is the velocity defect

law, which supports the principle of Reynolds number similarity upon which most
turbulence theories and data interpretations are based. This has applications in all
manner of flow situations, e.g. jets, wakes, mixing layers, boundary layers, etc. This
principle states that, at sufficiently high Reynolds numbers, mean relative motions and
energy-containing motions are independent of viscosity (or surface roughness) except
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Figure 4. Defect plot. (a) Superpipe data, corrected profiles 5, 10, 15, 20 and 26. (b) Data of
Henbest and (c) data of Abell, compared with profile 26 of the superpipe data. Profiles are shifted
up by 2.5 units. Profile 26 is denoted by ∗ in (a), (b) and (c). Profile 5 denoted by ◦ only in (a).

in so far as viscosity (and surface roughness) may affect the boundary condition of
the flow. Here, the Princeton data are compared with the smooth-pipe data of Perry,
Henbest & Chong (1997), hereafter referred to as the Henbest data, and Abell (1974)
to which MacMillan and turbulence corrections have been applied the same way as
to the Princeton data. The Henbest data are already corrected by the MacMillan
formula (private communications from Henbest) and so we apply only the correction
for the turbulence intensity.

Figure 4(a) shows the superpipe profiles 5 to 26, given in figure 1 where a+ ranges
from 2.344× 103 to 5.286× 105, plotted in velocity defect form. All profiles collapse
except profile 5. In fact it is found that all profiles collapse (including the ones
omitted here for clarity) for a+ > 5000. Figure 4(b) shows all the Henbest profiles
for which a+ = 1600 to 3800. They all collapse with the highest Reynolds number
superpipe profile 26 where a+ = 5.286× 105. Figure 4(c) shows the defect profiles of
Abell. The lowest a+ = 2500 profile collapses with profile 5 of the superpipe data but
the highest a+ = 6200 collapses with profile 26. Lack of collapse may indicate that the
development length L or other entry conditions may be entering the problem. For the
Henbest and Abell experiments, the boundary layer at the entrance immediately after
the inlet contraction was tripped with a length of sandpaper glued to the pipe surface.
The transition to turbulence in the superpipe was caused by background turbulence.
The ratio L/d, where d is the pipe diameter, is 160 for the superpipe, 400 for the
Henbest pipe, and 80 for the Abell pipe. It appears that low a+ and the lower L/d
give a slightly higher defect, whereas for L/d = 400, the defect law is valid unchanged
for a+ down to 1600. The reasons for this need to be explored, but in all cases for
a+ > 5000 the defect law works rather well and is independent of roughness. It may
well be valid down to a+ = 1600 which is the lowest of Henbest’s data.

6. Conclusions
It appears that the classical description of turbulent pipe flow is valid provided we

use the standard classical correction of MacMillan for the Pitot-tube readings and
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also a correction for turbulence intensity. The standard logarithmic law of the wall
with κ = 0.39 and A = 4.42 appears to be valid for both boundary layers and pipes
and the Colebrook formula for natural roughness is of the right order to explain the
superpipe data. The classical Reynolds number invariance of the velocity defect law
and its independence of the natural surface roughness is confirmed for a+ > 5000.
What is urgently needed next is an extensive set of mean velocity profiles in a pipe
measured with a hot wire.
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